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AXISYMMETRIC MELTING OR SOLIDIFICATION OF 
CIRCULAR CYLINDERS* 

JEROME M. LEDERMANt and BRUNO A. BOLEY $ 

(Received 3 June 1968 and in revisedform 10 April 1969) 

AhatraeGAnalytical short-time solution and numerical solutions for all times am derived for a cylinder 
melting under arbitrary heat inputs applied on its outer radius. The solutions am obtained by the embedding 

technique; the accuracy of the solutions is discussed and some numerical results am presented. 

NOMENCLATURE 

depth of ablated material ; 
inner radius ; 
outer radius ; 
specific heat ; 
coeffkient of fictitious heat flux 
expansion defined in equation (3.7a) ; 

G/Q ; 
coeffkient of melt depth expansion 
defined in equation (3.7b); 
conductivity ; 
latent heat ; 
non-dimensional material property 
defined in equation (3.4) ; 
heat flux ; 
reference heat flux defined in equa- 
tion (3.4) ; 
coeffkient in applied heat flux ex- 
pansion ; 
non-dimensional quantity related to 
reference heat flux defined in equa- 
tion (3.4) ; 
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I, spatial coordinate ; 

s(t), depth of melted material ; 

T temperature ; 
T 

ih, 

melt temperature of material ; 
initial temperature distribution ; 

T:(r), T:(X), initial temperature distribution 
in fictitious liquid ; 

T:(r, t), TT(X, Y), temperature distribution in 
fictitious liquid ; ’ 

To@, t), T,(X, Y), Green’s function ; 

t, time ; 
t my time for melt initiation ; 

tP time for melt completion ; 
X, (r - &Mb - 4; 
Y, (t - t,)ltm ; 
Y 
Y;l: 

%/(b - hJ2 ; 
q/(b - h,)‘; 

Y*, limiting time for applicability of 
short-time solution ; 

6, time interval ; 

C(Y;: 
diffusivity ; 
non-dimensional melt depth defined 
in equation (3.4); 

P9 density. 

Subscripts 

s, variable associated with solid ; 

LY variable associated with liquid, 
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Superscripts 
I variable associated with fictitious 

body ; 
* variable associated with analytic 

continuation of pre-melt function. 

1. INTRODUCTION 

THE PROBLEM of heat conduction in a body with 
a moving interface at which energy is absorbed 
or emitted is currently of considerable interest. 
While it has always been of concern to metal 
fabricators, it is only recently, particularly with 
the use of ablating heat shields, that it has 
become the subject of intense study. The 
problem is non-linear and is further complicated 
by the facts that the thermal properties in the 
liquid and solid phases are different and that 
the thermal and flow problems are interde- 
pendent. 

Numerical solutions of the axisymmetric 
melting of a cylinder have been obtained, for 
example, by Lardner and Pohle [l] by means 
of the heat balance integral, by Bonilla and 
Strupezewski [2] with the aid of an analog 
computer, and by Springer and Olson [3] by 
means of a finite difference space-and-time grid. 
In the present work are included short-time 
analytical solutions, as well as numerical long- 
time solutions which are obtained by a forward 
integration in the time domain only. 

The principal purposes of this investigation 
are the construction of analytical short-time 
solutions of the above-mentioned problem and 
the assessment of the feasibility of using the 
“embedding technique” for obtaining long- 
time numerical solutions. In the course of the 
work some numerical results of practical interest 
are derived. 

In Section 2 the general problem of ablation 
of an axisymmetric circular cylinder, solid or 
hollow, is mathematically defined and in Section 
3 the problem is solved for the case of instantan- 
eous melt removal. The method of solution, 
called the embedding technique and first intro- 
duced by Boley [4], can be applied to materials 
with non-uniform but temperature-independent 

properties, and to problems with arbitrary melt 
removal and applied heat fluxes which are time 
and space dependent. The method requires the 
introduction of a fictitious body whose shape is 
unchanged and identical with that of the 
unmelted body throughout the heating process. 
An unknown fictitious heat flux is applied to the 
surface of this body and is adjusted so as to 
satisfy, at points on the boundary of the actual 
body, the boundary conditions of the real 
problem. This results in a form of the inverse 
problem of transient heat conduction, in which 
however the interior conditions are implicitly 
prescribed. 

In Section 4 the results are discussed, and it 
is found that the adjustment of the unknown 
surface flux to give the desired conditions in the 
interior leads to certain numerical difficulties. 
Stolz [5] and Mirsepassi [6] found this generally 
to be true for the inverse problem. Sparrow 
et al. [7] consider the inverse problem and 
suggest a technique to avoid instabilities which 
makes use of a predictor-corrector method. In 
this paper numerical solutions of two distinct 
approaches are presented ; in the first an extra- 
polation technique is employed while in the 
latter Sparrow’s suggestion is adapted to the 
present problem. 

In Section 5 a general discussion of the short- 
time results is presented and the solidification 
problem, or melting with no melt removal, is 
briefly considered. 

2. AXISYMMETRIC MELTING OF A CIRCULAR 
CYLINDER WITH ABLATION 

Consider a right circular cylinder (Fig. 1) 
insulated at the ends and at its inner radius, 
heated on its outer cylindrical surface by a 
prescribed flux Q(r, C) and initially (t = 0) at a 
temperature X-(r) < T,, where T, is the melting 
temperature of the material.* The temperature 
on the boundary of the cylinder (I = b) increases 

* Only melting is discussed explicitly for the sake of 
conctiteness, but the results may be applied equally as well 
to solidification since the equations take the same form in 
both cases when written using dimensionless notation. 
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as heating progresses and reaches, at a time 
t, > 0, the value T,. For later times, as heating 
continues, a portion of the cylinder melts, so that 
the remaining solid region has an outer radius 
b - s(t). The melted portion may either be 
removed or left standing upon formation. The 
mathematical formulation of the problem differs 
in the pre-melt and post-melt regimes, and may 
be stated as follows, on the assumption that the 
properties are uniform and constant, but not 
necessarily equal in the solid and liquid regions : 
Pre-melt problem (t < t,,,) : * 

a2T,, + AaL 1 aTIs 
yq- -= -- 

Y ar Ks at 
b, < Y < b, t > 0, (2.1) 

k 85, 
- = Qk t) 

’ dy 
r=b, t>O (2.2a) 

To&, t) = T#) b, < y < b, t = 0, (2.2b) 

k 8% o 
SF= Y = bo, t > 0. (2.2c) 

Post-melt problem (t > r,,,): 

;laGJaG 
a2G 
ay2 Y ay ICY at 

b, < y < b - s(t), (2.3) 

l The subscripts S and L are used to denote solid and 
liquid, respectively. 

a2T, 1 aT, 1 aT, 
-+Y&=--at 
a9 

b -“s(t) < y < b - a(t), 

Ts(r, t) = T, I = b - s(t), 

ksz=Q2(t)-p,l$ r=b-s(t), 

k aT,=O 
s al 

Y = b,, 

TL(y, 0 = K, Y = b - s(t), 

k, F = Qz(t) r = b - s(t), 

k, z = Q(y, t) y = b - u(t), 

Ts(y, 4 = Tosly, G,,) 
b, < Y < b, t = t,, 
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(2.4) 

(2Sa) 

(2Sb) 

(2%) 

(2.6a) 

(2.6b) 

(2.7) 

(2.8) 

where 4t) is a prescribed depth of ablated or 
removed liquid material. Equation (2Sb) re- 
presents the heat balance across the interface. 
The function Q2(t) in equations (2.5b) and (2.6) 
is the flux leaving the liquid at the solid-liquid 
interface and couples the solution for the solid 
and the liquid. In the special case in which the 
melt is instantaneously removed upon forma- 
tion, equations (2.4), (2.6) and (2.7) are dropped 
and Q(r, r) replaces Q2(t) in equation (2.5b). In 
this case the applied flux is then assumed to be 

I I 
i 1 \ ---+-I’---- 

Insulated o(t) s(t) 

FIG. 1. Melting of an axisymmetrically heated circular cylinder. 
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positive since with instantaneous removal a 
nonpositive flux results in the cessation of 
melting, in which case the pre-melt formulation 
again applies. 

It is not possible to obtain a general closed- 
form solution to this non-linear problem; hence 
we develop: (a) analytical solutions valid for 
short times and(b) extended numerical solutions 
for the special limiting case of instantaneous 
melt removal. The other limiting case of no 
melt removal is briefly discussed later, along 
with some qualitative results regarding the 
short-time solution. 

Some conclusions which follow from the 
above formulation and are generally useful in 
later developments will first be given. The total 
heat balance for the case of arbitrary removal is 

‘rbQ(b, t)dt + / (b - a)Q(b - a, t)dt 

= j, [PS& :~scs(T. - Gl r dr 

b-a 

+ bS, wL(T, - T,bdr (2.9) 

where for the case of instantaneous melt 
removal a(t) E s(t) and the last integral on the 
right is zero. For this case, when Q is constant, 
the total time to melt is 

b 

t/ = L 
bQ s h& + PSGK, - &)I rdr 

bo 

(2.10) 

This equation cannot be used to evaluate tJ 
until the solution s(t) is known ; however, as 
will be seen, it can provide a useful check on the 
numerical solutions which will be obtained 
later. 

The initial and final melt rates for the case of 
instantaneous liquid removal can be written 

without determining the solution explicitly. By 
subtracting equation (2.2a) evaluated at 
t=t,- tJ from equation (2Sa) and noting 
that aTs/& is continuous at t = t, one obtains 

psl,$U:) = Q(b, t,‘) - Q@, &J (2.11) 

For the final melt rate, as melting is completed, 
one need only note that iYT,lar is always zero 
at r = b,, so that, from equation (2.5b), 

psi, 2 07) = Q(bo, t? 1. (2.12) 

3. INSTANTANEOUS MELT REMOVAL 

In the embedding technique for the case of 
instantaneous melt removal, i.e. a(t) = s(t), the 
melting cylinder of unknown outer radius is 
replaced by a fictitious one of fixed radius b 

Actual cylinder 

Q(r) 

Fictitious solid cylinder 

Q*(t) + Q’(t) 

T = T*+T’ 

FIG. 2. Actual and fictitious cylinders for problem with 
instantaneous melt removal. Fictitious cylinder completely 
envelopes the actual cylinder and has a fixed outer radius b. 

(Fig. 2). A total flux Q*(t) + Q’(t) is applied to 
the surface of this cylinder, where Q*(t) is the 
analytic continuation of the pre-melting heat 
flux and Q’(t) is the unknown fictitious heat flux. 
Thus, the temperature distribution is the sum of 
the analytic continuation of the pre-melt temp- 
erature distribution, T*(r, t), and of an unknown 
distribution T’(r, t) due to Q’(t). With Duhamel’s 
theorem, 

f 

T*(r, t) = 
s 

aTi, (r, h) dt 
Q*(t - tl)dt 13 (3.1) 

1 
0 
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t-t r - 
T’(r, t) = Q'(t - tl)z”’ %t,. (3.2) 

1 
0 

Where T,(r, t) is the temperature in the cylinder, 
initially at zero temperature, subjected to a unit 
flux on its outer surface and insulated at its 
inner surface. In this form the temperature 
already satisfies both the Fourier heat conduc- 
tion equation, equation (2.3), and the initial 
temperature distribution in the actual melting 
body, equafion (2.8). We now write the boundary 
conditions on the actual body at I = b - s(t) 
in terms of the temperatures just defined, namely 

t-t, 

T, = T*(r, t) + s Q’(t - t,)$‘dt, 
1 

0 

I = b - s(t), (3.3a) 

Q(r,t)-pl$=kF 

t-tm 

+k Q’(t - t,)$‘dt, 
1 

r = b - s(t). (3.3b) 

This is a system of ordinary integro-differential 
equations to be solved for the two unknowns 

Q’O) and s(O. 
The following non-dimensional variables will 

be introduced : 

I - b, 

X=b-bo 

w = __F- 
&/Wm) b - bo 

y”l = (b T’fmbo)’ 

J z CT, 

m=2T 
R = Qo(b - bo) 

kTn 

Q. = & kTm 
2 Jwm) 

k _ 
Th Y) = b _ b. - m, 0. (3.4) 

Q. is a constant reference flux taken as the 
constant heat input which melts a semi-infinite 
body, with the same properties as the cylinder, 
in the time t,,,. Equations (3.3) then become 

0 

x = 1 - 2 J(Y,) 8~) (3Sa) 

- YI) a2T, dy, 

Qo axah 

Q(-%Y) 2 d5 1 aT* =----_----_--- 
Qo mdy RT, 8X 

x = 1 - 2 J(Y,) t(y). (3Sb) 

The function To for solid cylinder with b, = 0 
can be found in the literature and is usually given 
in two forms, the first convergent for all X 

and Y, 

T,W, Y) = 2 Y,,J + ; (x2 - +) 

al 

c Jo(a3W - ew ( - &A ~ 
asJo 

, (3.6a) 

r=l 
with as ieiermined from J,(a) = 0, and the 
second, 

(3.6b) 
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which is an asymptotic expansion valid for 
small values of y and of (1 - X), that is in the 
region where the first representation converges 
very slowly. Note that for small values of y the 
function T, is the same for solid and hollow 
cylinders; hence the short-time results derived 
in this section are equally valid for both. 

Equations (3.5) are valid for all times and for 
arbitrary heat fluxes. They are solved analytically 
in detail for short times after the start of melt in 

[13] and in this paper numeri~lly for all times. 
Briefly, the short-time solution is obtained by 
expanding the known and unknown functions 
appearing in the equations about y = 0 and 
equating coefficients of like terms in y. One 
writes, in other words, 

Q’(Y) _ 

Q 
c,y* t- c2y -i- c,y* + . . . , (3.7a) 

Sty) = d,y + d,y+ + d4y2 4 . . . (3.7b) 

Table 1. Co&Gents o~e~ten~ed short rime solution 

Order of term 

Instantaneous melt removal 
_ -._-_-- 

s*(Y) 

Constant applied flux 
~.__ - ._-. 

Q'MiQo 

Y2 

2 
+qP + aI1 1 

Y3 
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Table 2. ~o~c~ents of extended short time solution 

419 

Order of term 

._ 
Instantaneous melt removal 

C(Y) 

Variable applied flux 

Q’(Y)/Q~ 

Y 
1 
- m&l 
2 

- JY, + 

- mJy,aioqo) mJwioql - 
16 
- 
3n q/ha, 1 ‘i. 

2 
- m2yh0wh m2y,a20d T - 

1 

-- m2Jxdw041 mh4Oq, - 2 2 

J’n 1 
+ ~my,aioql - 2mJ,a,,q~ 

2 16 
+ - - m’y,a& - - ma, t i- 2- my,a,, 

8 3x+ Jn 

and then solves equations (3.5) for the coeffrci- a Taylor expansion for the dependent variables 
ents ca di(i = 1,2. . .) [8]. The resulting system is cannot be employed, and great loss of accuracy 
given in the Appendix, the first four terms for is incurred unless special precautions are taken. 
constant applied heat flux are given in Table 1 The Taylor expansion cannot be written since 
and the first three terms for arbitrary applied 
heat flux in Table 2. 

Q’(0) = i(O) = i(O) = 0 

A numerical solution of the melt problem and 
valid for all times will now be obtained for a solid 
cylinder in which the basic equations of the 

dQW d”Q’@f d”tW 
__ = - = - 

embedding techniques, equations (3.5), are used. dy dy” dy” 

Numerical integration of these equations is not when there is no jump in 
straight-forward for the two principal reasons : instant of melt initiation; 

--f co,n = 2,3... 

applied flux at the 
furthermore, when 
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there is a jump, then Q’(0) and 

d"QW 
----con=: 1,2.... 
W' 

The method employed here eliminates this 
difficulty by approximating the intervals on the 
left side of the interface boundary conditions, 
equations (3.5), as explained below, by means of 
the previously derived analytical starting solu- 
tion in the region in which it is valid [ 121. 

Let y* > 0 be a time, sufficiently short, so that 
the short-time solution holds in good approxi- 
mation within 0 c y < y*, and let 

Q(Y) = Q’(Y) o<y<y* (3.8) 

where Q’(y) is the short-time solution for the 
fictitious heat flux and y* is dependent upon the 
number of terms taken in approximating this 
function. Then 

Y Y -. y* 

I Q'(Y - YJ 2 dy, s s Q’(Y - ~1) 

0 0 
Y 

dG 
x -dy, + 

aY1 s Q(Y - yJ;+ dy, (3.9) 
Y-Y' 1 

where f&X, y) is the appropriate one of the func- 
tions To or aT,/dx depending upon whether 
equation (3Sa) or (3Sb) is being considered. 

The interface boundary conditions will now 
be considered for the times y = y* + ~6, n = 0, 
1 , . . . , S > 0. Before giving the general forms of 
equations (3.5), for the values of n >, 1, the 
special cases of equation (3.5b) for y = y* and 
y = y* + 6 (i.e. n = 0, 1) will be studied. 

With y = y* in equation (3Sb) one obtains 

+ 

The only uneval~ted term on the right side of 
this equation, the term containing the integral, 
can be determined by direct integration, which 
yields a very complicated expression involving 
the Dawson integral [lo], or by an approximate 
numerical scheme. The latter approach was used 
and the trapezoidal approximation was em- 
ployed. In equation (3.10) t(y*) is obtained from 
the short-time solution, and the value of [(t* + 6) 
is determined from 

i3Y + 4 2 t(Y) + aY)* (3.11) 

evaluated at y = y*. 
With y = y* -I- S in equation (3.5b) one 

obtains 

+ ’ Q'(Y - Yl) 3% dy s Qo axay, 1 
0 

+ 
Qcv - Yll a2T3 dyl 

Qo axah 
d 

X = 1 - 2~~~)~(y* + 6). (3.12) 

The last integral on the right is evaluated by the 
trapezoidal rule. In the first integral the trape- 
zoidal approximation is not su~ciently accurate 
since 8 T,/aXay, varies greatly in the interval in 
question ; however, Q’(y) does not vary signifi- 
cantly and can therefore be approximated by 

Q’(Y* + 6 - Y,) = Q’(J)*) 

+ Q’(Y*) 
TV - Ylh (3.13) 

After substitution of this in the first integral and 
integration by parts equation (3.12) becomes 
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x = 1 - 2&y,)&* + 6). (3.14) 

Letting y = y* + 6 in equation (3.11) one 
obtains <(y* + 26). 

The general formulation for y > y* + 6 can 
now be considered. The first integral on the 
right side of equation (3.9) is broken into n 
intervals of duration 6 and the trapezoidal rule 
is applied to the last (n - 1) intervals. In the 
first interval, 0 < y, < 6, for small t(y), the 
function G(X, y) again varies considerably, as in 
the case of the evaluation of <(y* + 6), while 
Q’(y) does not. Consequently, in this interval, 
Q’(y) is approximated by 

Q’(Y - ~1) 2 Q’(y - 6) 

+a-Yl T [Q'(Y - 4 - Q'(Y - 241 . (3.15) 

After integration by parts equation (3.9) becomes 

Y s Q'(Y - yda~ch z Q’(Y - 4 
1 

+ ; - 4 g (-0) + Q’(Y*) 
1 

x qx,y-y*) 
ah 

n 

Q’(Y - i4 
i=2 

Y 

x E(X,i6) + 
ah s CXY - Yl) 

Y - Y* 

x E (XYA dy,. 
ah 

(3.16) 

““i s){To(X,6) + f/TOdyl 

+PT(x,~)}iAII-~(x,y)~ 

+ Q’(Y - 26) I ’ 

s 

6 Q’(Y*) 

QO 
s TOdy, + -- 

2 Qo 
0 

. 
n 

8% 

xayl KY - Y*) - 6 
c 

Q’(Y - 4 
Q 

0 
i=2 

8x3 y&J - Yl)al 

xay, GW) - Q 

5 
Y-y’ O 

aydy, 
1 

x = 1 - qAJu3.Y) (3.17a) 

2d5 QW 1 aT* _---A___ Q'O, - 4 
mdy - Qo RT, Qo Qo 

6 

As before the last integral on the right is evalu- 
ated by the trapezoidal rule. Substitute this 
result into equations (3.5) to get the two interface, 
conditions as : 

x 
I 

%(X,8)+; zdy, 
s 
0 

+ k&(X,~) 

1 I 

- Q’fJJ ; 26) 
0 

YdT 
x s 2 dy, - ;Q($$,(x,y - y*) 

5 
0 

II 

+6 

c 

Q'bQy i6)+?$_(x,ia) 

1 
i=2 

+ )‘cxY - Yl) a2T, dy 
5 

Y-Y’ Qo axay, 7 

x = 1 - qhN.Y). (3.17b) 
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With y = y* + n& and <(y* + 86) known, 
Q’[y* + (n - l)S] and &y* f &I) are deter- 

numbers of almost equal magnitude, T*/T, + 
T’/T, r 1, and unity. It was found that as t(y) 

mined from equations (3.17) and C[y* + (n + approached a value for which T,/T, became 
1)6] is determined from equation (3.11). Then rz inaccurate, < r 0.2, up to six figures were being 
is increased and the process is repeated. lost in the calculation of (1 - T*/T, - ‘Y/T,). 

Two approaches were used to remedy this 
situation.* In the first the unknown values of the 
fiction Q’(y) were extrapolated in the manner 
presently to be shown and equations (3.17b) and 
(3.11) were used to solve for t(y) until melting 
stopped. The extrapolated values of Q’(y) were 
determined from 

This procedure led to sufficiently accurate 
results for values of the dimensionless melt 
depth 5 not larger than about O-20; however, for 
larger values the results became inaccurate. This 
occurred because an attempt was being made, 
in the above procedures, to adjust a flux on the 
surface [i.e. Q’(y)] to give the correct tempera- 
ture at an interior point; the latter is however 
little influenced by relatively large changes in 
this flux: in other words, it is characteristic of 
the diffusion problem that a small inaccuracy 
in the heat flux applied to the surface of a body 
will, for short times, have little effect on the 
temperature of points distant from the surface. 
The reverse is true of the converse problem 
which we are solving, that is, a small inaccuracy 
in the calculation of the temperature may result 
in a large error in the calculation of the surface 
heat flux. More specifically, in our problem 
calculations are made according to the formula 

Q’(y) 2 Q'Q) + y (y - y) 

where jj is the time of the last reliably calculated 
value of Q’(y) and the coe&cients Q’@) and Q’(J) 
were determined by the second order backwards 
difference formulas : 

42’69 1 
- z a 

dy 
3Q’(p) - 4Q’@ - 6) 

g+;+;= 1, (3.18) 
m m m 

, (3.21a) 

where ?r is the temperature at the melt surface 
due to the analytic continuation of the pre-melt 
heat flux and the temperature T’ and TX are 
caused by the fictitious heat input Q’ as follows : 

d’Q’@) 1 

dy2 
2 F (2Q’ (7) - 5Q’(y - 6)’ 

n 
T’ 
-_= 
T, c 

c&gy - icq 

i=2 

r, 
- = cr Q’(y - 6). 
T, 

(3.19) 

The procedure consists in calculating T,/T, from 
equation (3.18) and then solving for Q’(y - 6) by 
determining cr. This latter calculation is diffi- 
cult to perform accurately for the reasons dis- 
cussed in the preceding paragraph and further, 
because T,/T, is the small difference of two 

+ 4Q’@ - 28) - Q’@ - 36)). (3.21b) 

This procedure is quite limiting, however, even 
if more terms are taken in equation (3.20), since 
it cannot be used where it would be unreasonable 
to expect an expansion of the form of equation 
(3.20), i.e. ifthe applied heat flux is not sufficiently 
smooth, or where a check on the approximation 
is not available. In such cases an alternate pro- 
cedure can be used to solve the system of 
equations. Two equations of (3.17a) for suc- 
cessive time y = y* f nS and y = y* + (n + 1)6, 
are subtracted and a predictor-corrector method 
for Q’(y) is employed. Subtracting the two 

--- 
* A third approach [fl would employ increasing time 

intervals as ti&increas& but the a&r& of the c&la- 
tion would thereby be diminished. 



MELTING OR SOLIDIFICATION OF CYLINDERS 423 

equations helps improve the accuracy of the 
calculations since the difference form does not 
change TJT, as given in equation (3.19) while 
the other terms in equation (3.19) are made 
significantly smaller. Equation (3.19) thus be- 
comes 

AT* AT’ Tl 
T+T=T (3.22) 

In m m 

This decreases the effect of the second source of 
error described above, while the predictor- 
corrector method similar to that of [7] decreases 
the effect of the first source of error. Thus T,/T, 
is determined by using an extrapolation formula 
to evaluate Q’(y - 8). The effect due to Q’(y - 
26), which is found to be significantly larger than 
that due to T,/T,, is then extracted from 
T’/T,, i.e. 

AT’ 
- = Ac,Q’(y - 26) 
T, 

I, AclQ’(y - id) (3.23) 
i=3 

and Q’(y - 26) is treated as an unknown. With 
r(y) known, a value of Q’(y - 6) is predicted, the 
difference equation form of equation (3.17a) is 
solved for Q’(y - 26) and e(y) is determined in 
the normal manner. The process is then repeated 
for the next incremented value of y to obtain the 
corrected value of Q’(y - 6) and the value of 

&y + 6). This method effectively extends the 
range over which Q’(y) can be determined. 

4. NUMERICAL RESULTS 

The first approach, as described in the preced- 
ing section, was employed in solving various 
problems with constant applied heat flux. A 
check was provided by equation (2.10) which in 
nondimensional form is : 

yf = &k_~,) j <(Y,) dy, 
0 

1 2m 

+ 2,/&,JmQI ’ + ,/b> - ” [ -1 (4.1) 

where yf is the total time to melt and Q1 is the 
actual heat flux divided by the reference Qo. 
Table 3, which presents yr for various values of 
the material parameter m and the parameter y,,, 
which is a measure of the magnitude of the 
applied flux or the melt time, shows that the 
first approach is valid over a wide range of 
parameters. Lines 5 and 6 of the table compare 
yf for the same value of the parameters m and ym 
with different approximations for equation 
(3.20), i.e. in line 5, Q’(J) was set equal to zero 
and in line 6 it was calculated from equation 
(3.21b). It can be seen that the per cent difference 
between the predicted numerical results is 
decreased to 1.26 per cent in the quadratic 
approximation from 4.81 per cent in the linear 
approximation. 

Table 3. Comparison of numerical and predicted melt times 

m Ym mR 

1 0.5 
2 0.5 
3 0.5 
4 5 
5 10 

6 10 

0.01 

0.1 
04 
01 
O-4 

0.4 

Y, 
(numerical) 

Yf 
bred.) 

o/o difference 

4.43 1 
1401 
0.701 

14.01 
14.01 

14.01 

28.26 
8.65 
4.97 
2.14 
0.603 

(linear) 
0.636 

(quadratic) 

28.34 0.286 
8% 0.875 
5.00 0.600 
2.21 3.27 
0.632 4.81 

0.664 1.26 

. 
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In Fig. 3 curves of melt depth vs. time for 
various values of the parameter mR = J(n)m/ 
2,/(y,) are presented. Although only a few 
values of mR are used, the curves indicate that, 
as mR is increased, the normalized plots of s 
against time depend essentially on the single 
parameter mR. A similar result was obtained by 
Citron in [ 1 I] for the case of a slab. 

06 
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0.4 

0.3 

0.2 

0.1 

I I 
) O,I 0 2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 I .c 

Time/ Total melt time, Y/U 

FIG. 3. Melt depth vs. time. 

The second method was used on a case of the 
variable applied heat flux shown in Fig. 4. This 
flux, presented in [ 111, is typical of fluxes due to 
atmospheric heating of reentry vehicles. As 
shown in the figure a reasonable approximation 
for this flux, during the period t c 19 s, is 

Q(t) = 11.776 (e0’152f - 1) t < 19 s. (4.2) 

This results in the following temperature dis- 
tribution before melting : 

T(r, tf = 23552 g & 
m 

0.152t --1)-t 

(4.3) 

A solid iron cylinder of radius 2 cm with 
physical properties rc = O-0986 Cm2/s, T, = 
15OO”C, L = 64 Cal/g, p = 75 g/ems, c = 0.13 
cal/g”C and m = 2.7 was considered. 

The melt time was determined from the 
transcendental equation which results from 
setting T = T,, r = b and t = t, in equation 
(4.3). This results in the value t, = 17.45 s. 
Since t, < 19 s, equations (4.2) and (4.3) may 
be used as the analytic continuations of the 
pre-melt heat flux and temperature distribution, 
respectively. The results showing melt depth 
are given in Fig. 4. 

It may be concluded that the fictitious body 
technique is a workable method for obtaining 
numerical solutions of melting and solidification 
problems. It requires a minimum of calculations, 
as compared to a finite difference scheme using 
a space-time grid, since only quantities on the 
melt interface are calculated, and thus ordinary, 
rather than partial, integro~ifferential equa- 
tions are used. Of course, great care must be 
exercised in order that sufficient accuracy is 
maintained ; the check provided by the time of 
total melt, equation (4.1), is valuable in this 
connection. 

% 

Time, s 

FIG. 4. Melt depth vs. time for a cylindrical body subjected 
to atmospheric heating during re-entry. 



5. DI!XUSSION OF SHORT-~ SOLUTION b-s2 b-9 

Conditions for the starting of melting = j wswdr - f ~PSQK, - T&l 

Melting may or may not start when the sur- 
face of the cylinder first reaches the melt temp- 
erature depending upon the history of heating 
and the applied flux at t = t,,,. Conditions on the 
applied flux can be determined from the fact 
that the melt depth must initially become positive 
for melting to start. From the solution for &y), 
Table 2, one sees that q. > 0 is sufficient to 
guarantee that melting starts at t,. If q. = u tnen 
the condition becomes q1 + 4ul r/x > 0, in which 
case the applied flux may even be decreasing, 
though of course it must remain positive. Should 
q. = q1 + 4a,,/n = 0 then the condition be- 
comes [qq2 - &O-)1 - ~~~~~/~~ > 0 and so 
forth. For the special case of a heat flux analytic 
about y = 0, the second condition is seen to be 
satisfied, since q1 = 0 and a,, > 0. 

h 
+ psIs] T dr. (5.1) 

Assume in some small interval t’ < t < t’ + 6, 
6 > 0 that s2 > s1 ; then applying the lemma 
derived in [13] and noting that u, = 
Ti - Ti < 0 yields 

b-s’ 

0 < - bja2 [P~MC,, - Ti) + ~~41 rd r9 (5.2) 

which results in a contradiction since the 
integrand is positive ; hence s1 > s2 in t’ c t 
< tf + 6. 

It is possible that a time t” > t’ + 6 exists for 
which s’(f) = sl(t”). It can however, be shown 
that such a time cannot exist provided 
(rQIB_s ) > (rQ21b_s). The proof is not given 
since it follows an analogous proof for a slab 
[I2], eXmpt that rQ ia-, replaces Q(t) and 

g [rQ j~-sttJ replaces dQ/dt. 

An example in which the conditions of the 
above comparison theorem holds is immediately 
given by the short-time solution of Table 2, 
since when qh > qi it is clear that s1 > s2. For 
this example not Only is (rQ1 f&_.Sl) > (rQ2 (&, 
but Q’ I,,_+ > Q2 lb-$ also holds. It is ofcourse 
possible to have Q’ 1b-s’ > Q2 lb-s2 and s1 > s2 
with(rQ’ lb_s’)not alWaySlarger than(rQ2 [b_s2) 
provided that sufficiently large times are con- 
sidered. An example of this 

q; - q; = Aqo > 0, q: = qf = 0, 

q; - q; = - Aq2, q; B 4 q; % 0, (53a) 

in which case in the interval 0 < y < Aqo/Aq2, 
{’ > r2 and 

2 

Compurison between two problem tith instuntan- 
eous melt removal 

Two solutions (denoted by the superscripts 
1 and 2 respectively) will now be considered 
for the problem with instantaneous melt re- 
moval under two heat inputs Q’ and Q2, i.e. 
solutions to equations (2.1)-(2.8) with a(t) = s(t). 
It will be shown that, if [rQ’(r, t) Ir=b-ss] = 
kQZh t) jr=14 in 0 <t < t’> t,,, and 
[rQ’(r, t) jr=8_s~] > [rQ’(r, t) (r+stl in t’ < t, 
so that Q’ = Q2 in 0,~ t c t’ and Q’ # Q2 for 
t > t’, then s’(t) > s’(t) for t > t’. 

The statement is proved in two parts: in the 
first it is shown that s1 is initially greater than 
s2, while in the second it is shown that the 
assumption that s2 is greater than s1 results in a 
~on~adi~ion at later times. The first part of the 
proof follows from the overall heat balance, 
equation (2.9), which written for both problems 
and subtracted becomes, after subtracting, 

Xg) X=1-2Jymn52 - xFi x=1-ZJY."C' ! 

z - (Aqo - Aw) 

+ mAqo,/(y,) y+ qi + qjj y. (5.3b) 
0 

t’f8 
0 < s [(b - s’) Q’(b - s,” t) 

-(tl - s2) Q2(b - s2, t)] dt 

Thus it is seen for q& qi sufficiently large there 
is a period within the interval 0 < y < Aq0/Aq2 
in which (rQ’ i6-J < (rQZ Ib-s2). 
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APPENDIX 

The following is the set of algebraic equations obtained 
from equations (3.5) with equations (3.7) substituted s yf aso4 = q4 + a32 g. I (A.24 

fcl - Uh,,ho4 = - all, (A,Is) Equations A.1 are obtained from the interface temperature 
condition and equations A.2 from the interface heat balance. 
Notice they can be solved for say givea set of qi by direct 

2 
-cz - J(n)c,d,, + 9 

elimination. Table 2 gives a few terms of the sofution for 

3 ct + 2J01~,0’3 =O, fA.lb) arbitrary heat flux 

FUSION OU SOLIDIFICATION A SYMETRIE DE REVOLUTION DE CYLINDRES 
CIRCULAIRES 

R&n&--Une solution aaalytique pour les temps courts et les solutions aumeriques pour ua instant 
quelconque soat obtenues pour la fusion d’un cyliadre avee des flux de chaleur arbitraires impo& sur 
son rayon exttrieur. Les solutions soat obtennes par la technique d’encastremeat; la prcicision des solu- 

tions est disc&e et quelques resultats aumeriques soat p&seams. 
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ACHSYMMETRISCHES SCHMELZEN ODER VERFESTIGEN VON KREISFORMIGEN 

ZYLINDERN. 

Z*sannnenfaw--Eine analytiscbe LBsung fiir kurze Z&en und nmnerische LLisungen fiir beliebige 
Zeiten wurden fiir beliebige Zeiten wurden fiir einen Zylinder ermittelt bei beliebiger W~~ezuf~ am 
Umfang. Die LGsungen wurden mit Hilfe der “‘Einbautechnik” erhalten; ihre Genauigkeit wird diskutiert 

und an numerischen Ergebnissen gezeigt. 

O~EC~MM~TP~~HO~ ~~AB~EH~E MJIM 3ATBEP~~BA~~E KPYrOBbIS 
I~~~~H~POB 

~HoT~~~~-~o~~qeH~ aHa.mwwecIioe ~.m hfamx speMeH si w4cnemibIe peuremrs ~nrr 
JIW~LIX MOMCHTOB BPeMeHa 0 IlJlaBJIeHIlEl ~llJI%iH~POB IIpH nPOEl3BOJIbHOti nofia9e Tt?nJIa Ha 
WOBHE!IIIHlOM 6OKOByIO IIOBepXHOCTb.h!IIIeHPifI ITOJIy~eHbICIIOMO!.I&bIOMk?TO~HKW BJIOHEeHIIH. 

06cywaeTca TOqHOCTb peIlIf?HIft,H IIPIlBOJ(ATCR HeKOTOpbIe YECJIt?HHJz.Ie pe3yJIbTaThI. 


